A multiplicative Kowalski-Słodkowski Theorem for -algebras

نویسندگان

چکیده

Abstract We present here a multiplicative version of the classical Kowalski–Słodkowski theorem, which identifies characters among collection all functionals on complex and unital Banach algebra A . In particular, we show that, if is $C^\star $ -algebra, $\phi :A\to \mathbb C continuous function satisfying \phi (x)\phi (y) \in \sigma (xy) for $x,y\in A$ (where $\sigma denotes spectrum), then either character or $-\phi

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Topological View of the Kowalski - Van Emden Theorem

1 Introduction. In 8] we showed how several issues of importance in logic programming can prootably be viewed by casting them as questions concerned with topologies on spaces of interpretations and topological continuity of operators associated with logic programs. In doing this, we were building on earlier work of Batarekh and Subrahmanian 1, 2, 3] and extending and generalising their ideas. F...

متن کامل

CONTINUITY IN FUNDAMENTAL LOCALLY MULTIPLICATIVE TOPOLOGICAL ALGEBRAS

Abstract. In this paper, we first derive specific results concerning the continuity and upper semi-continuity of the spectral radius and spectrum functions on fundamental locally multiplicative topological algebras. We continue our investigation by further determining the automatic continuity of linear mappings and homomorphisms in these algebras.

متن کامل

Almost n-Multiplicative Maps‎ between‎ ‎Frechet Algebras

For the Fr'{e}chet algebras $(A, (p_k))$ and $(B, (q_k))$ and $n in mathbb{N}$, $ngeq 2$, a linear map $T:A rightarrow B$ is called textit{almost $n$-multiplicative}, with respect to $(p_k)$ and $(q_k)$, if there exists $varepsilongeq 0$ such that$$q_k(Ta_1a_2cdots a_n-Ta_1Ta_2cdots Ta_n)leq varepsilon p_k(a_1) p_k(a_2)cdots p_k(a_n),$$for each $kin mathbb{N}$ and $a_1, a_2, ldots, a_nin A$. Th...

متن کامل

A multiplicative Banach-Stone theorem

The Banach-Stone theorem states that any surjective, linear mapping T between spaces of continuous functions that satisfies ‖T (f)− T (g)‖ = ‖f − g‖, where ‖ · ‖ denotes the uniform norm, is a weighted composition operator. We study a multiplicative analogue, and demonstrate that a surjective mapping T , not necessarily linear, between algebras of continuous functions with ‖T (f)T (g)‖ = ‖fg‖ m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Canadian mathematical bulletin

سال: 2022

ISSN: ['1496-4287', '0008-4395']

DOI: https://doi.org/10.4153/s0008439522000662